Summary of data analysis commands in the Stata panel

Mondo Technology Updated on 2024-01-31

First, make a declaration of the panel data:

In front is the cross-section element, followed by the time marker:

tsset company year

tsset industry year

Generate a new variable: gennewvar=human*lnrd

Produces the hysteresis variable genfiscal(2)=l2fiscal

Differential variable genfiscal(d)=d. is generatedfiscal

1. Descriptive statistics.

xtdes: the overall description of the number of cross-sections and time span of the panel data.

xtsum: Basic statistics for individual variables are calculated within groups, between groups, and samples as a whole.

xttab displays the distribution of a variable in a list.

II. Main Commands and Methods.

The main command in stata for estimating the panel model: xtreg

xtreg depvar [varlist] [if exp] ,model_type [level(#

model type.

be between-effects estimator

fe fixed-effects estimator

re glsrandom-effects estimator

pa geepopulation-**eraged estimator

mle maximum-likelihood random-effectsestimator

Main Estimation Methods:

xtreg: fixed-, between- and random-effects, and population-**eraged linear models

xtregar:fixed- andrandom-effects linear models with an ar(1) disturbance

xtpcse :ols orprais-winsten models with panel-corrected standard errors

xtrchh :hildreth-houckrandom coefficients models

xtivreg :instrumentalvariables and two-stage least squares for panel-data models

xtabond:arellano-bond linear, dynamic panel data estimator

xttobit :random-effectstobit models

xtlogit :fixed-effects,random-effects, population-**eraged logit models

xtprobit :random-effects andpopulation-**eraged probit models

xtfrontier :stochastic frontiermodels for panel-data

xtrc gdp invest culture edu sci health social admin,beta

3. Application of the xtreg command.

Declaring Panel Data Types:

1. Panel Declaration.

use fdi.dtar, clear

xtset id year

1.Fixed-effect model estimates:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe

2.Random-effects model estimates:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re

3.Maximum likelihood estimation ml:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,mle

Hausman's test is whether to choose a fixed-effect model or a random-effects model

Step 1: Estimate the fixed-effect model and store the results.

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe

est store fe

Step 2: Estimate the random-effects model and store the results.

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re

est store re

Step 3: Perform a Hausman test.

hausman fe re

Heteroskedasticity and sequence-correlation tests for fixed-effect models:

xtserial xtreg lngdp lnfdi lnie lnex lnim lnci lngp

Heteroskedasticity test:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe

xttest3 (modified wald statistic for groupwise heteroskedasticity in fixedeffect model)

Sequence correlation tests for random-effects models:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re

xttest1

XTTet1 was used to test for random effects (uni-tailed and two-tailed), first-order sequence associations, and a combination of the two.

The results of the test showed that there was a random effect and sequence correlation, and the combined test for random effect and sequence correlation was also very significant.

Heteroskedasticity and sequence correlation can be corrected using the generalized linear model XTGLS

xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels (hetero), corrected for heteroskedasticity.

xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(correlated), correcting for heteroskedasticity depending on the cross-section.

xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(hetero) corr(ar1), corrected heteroskedasticity and first-order sequence correlation ar(1).

Related Pages